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LETTER TO THE EDITOR 

On the application of continued fractions to 
bound-state problems 

J P Lavine? and H S Picker$ 
t Physique Nucl6aire ThBorique, Institut de Physique, 
Universit6 de Lihge, Sart Tilman, 4000 Liege 1, Belgium 
$ Physics Department, Trinity College, Hartford, Connecticut 06106, USA 

Received 20 August 1973 

Abstract. We point out that the eigenvalue condition used by Biswas and Vidhani in 
a recent paper gives incorrect results for bound-state energies in two of the examples 
with which they illustrate their method. The error in the first of these applications is 
traced to the fact that their representations of bound-state radial functions do not 
necessarily vanish at the origin. In the second example in question, the bound 
states are not properly distinguished from the anti-bound states. In both cases, the 
defective results arise from neglect of boundary conditions. 

Biswas and Vidhani (1973, to be referred to as BV) have revived a method of Ince (1926) 
and used it to investigate solutions of the radial Schradinger equation for several 
simple potentials. Their procedure generates a continued-fraction representation of 
the logarithmic derivative of one of the two independent solutions of a transformed 
radial equation. They claim that the bound-state energies can be found from the 
condition that the resulting continued fractions terminate. This criterion is not 
derived by them from properties of bound-state radial functions; rather, they seem to 
infer its general validity from the circumstance that it is true for the one-dimensional 
harmonic oscillator. The results they obtain for the s wave bound states of the expon- 
ential potential demonstrate that their conjecture must in general be false. 

The equation for the s wave radial function U(E,r) for an attractive exponential 
potential is written by BV as (equation (2.10) of their paper) 

e+ [ , + A  exp( -31 U = 0. 
dra 

This is transformed into 

daX dX b 
dx2 dx 2 

X - + ( b - x ) - - - X =  0 

by the substitutions x = d(-E), p = xr, U = exp(-p)u(p), t = exp(-p/2xu), 
x = 2ict, X = exp(ic&O). Here b = 1 +4xa and c2 = 42A. Following Ince (1926), 
they conclude that 
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where the prime denotes differentiation with respect to x. They note that the continued 
fraction on the right-hand side of (3) terminates when Bb = -n, n = 0,1,2, . . .. 
Since b = 1 + 4 a 4 (  - E), their assumption that the continued fraction should indeed 
terminate when it represents the logarithmic derivative of a transformed bound-state 
radial function leads them to assert that the bound-state energies for the exponential 
potential in (1) are given by 

n = 0 , 1 , 2  ,.... (2n + 1)2 
1 6a2 

E =  --, (4) 

Equation (4) suffers from two obvious faults: (i) the energies it yields are independent 
of the potential strength A (and also of the sign of A); and (ii) it defines an infinite 
sequence of bound-state energies, in direct contradiction to the Bargmann (1 952) 
inequality (see, eg, Newton 1966, p 357). 

These defects are directly attributable to the fact that the boundary conditions on 
U(E,r) were not specified by BV. In fact, examination of equation (3) when b = 0 and 
b = -2 shows that the resulting radial functions are neither normalizable nor real 
and do not vanish at r = 0, so they cannot represent bound states. Explicitly, we 
find for n = 0 (b = 0) 

U&) = No exp( + r / k )  exp[-2iad(A) exp( - r / h ) ] ,  
and for n = 1 (b = -2) 
U,(r) = N ,  exp( +3r/4a) exp[ -2iad(A) exp( -r/2a)]2[1+ ic exp( -r/2u)]. 

Thus, it is clear that in this example the termination of the continued fraction does not 
correspond to the location of bound-state energies. (We note parenthetically that the 
energies specified by (4) cannot be identified with the ‘redundant poles’ either, as may 
be seen by referring to Newton (1966, p 420).) Because they neglected to specify the 
branch of the square root in their definition x = 2/( - E), Biswas and Vidhani give us 
no way of determining the sheet of the energy Riemann surface on which the energies 
given by (4) are defined. 

It is possible to extract bound-state energies from equation (3) if one recognizes the 
right-hand side as the continued-fraction expansion of d/dx(ln,F,(~b,b;x))(an expansion 
which does not terminate in general) and transforms the hypergeometric function ,F, 
into a Bessel function whose argument depends on the strength of the potential. One 
then searches for energies such that the Bessel function vanishes at r = 0 (see, eg, 
Newton 1966, p 420)-these are the bound-state energies. However, there appears to 
be no advantage in obtaining the continued fraction as an intermediate step, since the 
form of the solution may be recognized from the transformed differential equation 
directly. 

Following the above example, BV apply their method to the HulthCn potential, for 
which they write the s wave radial equation as 

With the substitutions U = exp(-ikr)g and z = exp(-pr), they obtain 
ab - g ’ - -  

z(l -z)[ab+(u+b+ l)]’ 
[c+ 1 -(a+b+3)z]+. . [c-(a+b+l)z]+ 
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where the prime denotes differentiation with respect to z, 

ik . \ / ( -k2+hp) 2ik 
3 b = - -  5 c = 1+-* 

ik 2 / ( -k2+&)  

P P P P P 
a = - +  

Again, demanding that the continued fraction (6) terminate at  each bound-state 
energy, they claim that the bound-state wavenumbers are given by the conditions 
a = -n or b = -n, n = 0,1,2,. . .. From this they conclude that the bound-state 
energies are 

-1 
4n2 E = k2 = -(h-n2p)2, n = 0 , 1 , 2  ) . . . .  (7) 

Once more, we are confronted by an infinity of bound states for attractive or repulsive 
potentials of any strength, even if we discard the entry with n = 0, which is clearly 
spurious. In this case also the Bargmann inequality is violated. The difficulty here 
again arises from neglect of boundary conditions. The energy sheet on which (7) 
holds has not been clearly defined by BV. Comparison of equation (7) with the formulae 
of Newton (1966, p 422), shows that all but at most a finite number of the energies in 
this sequence correspond to anti-bound states and thus belong on the unphysical sheet 
of the energy Riemann surface. If h > 0, then those terms on the right-hand side of 
(7) with n = 1,2, . . . < p-1’21X11’2 represent genuine bound states. 

It thus appears that the eigenvalue condition employed by BV is incorrect in 
general. In those particular instances for which it happens to work as for the HulthCn 
potential above, care is required to insure the observance of physical boundary condi- 
tions. A continued-fraction algorithm for bound-state energies which is free of these 
deficiencies has been given by Lovelace and Masson (1962). 

The authors thank the Nuclear Theory Group of the University of Maryland for the 
hospitality extended them during their visits. 
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